文章简介:
- 1、大连化物所发现可替代贵金属的加氢催化剂
- 2、17、多相催化与均相催化主要的区别,如何结合优点,克服缺点? (分离难易、活性、腐蚀性, 均相催
- 3、催化剂的应用对高辛烷值汽油的应用及进展
- 4、贵金属催化剂钋钯含量
大连化物所发现可替代贵金属的加氢催化剂
近日,中科院大连化物所孙剑研究团队发现了一种可替代贵金属金或银的铜催化剂,在催化加氢反应中表现出与传统铜催化剂完全不同,而与金或银接近的性能。相关研究成果发表于12月22日出版的《科学-进展》上。
原子的外围电子结构常常会决定金属的化学性质,金、银等贵金属电子结构稳定,因此一般条件下不易与其他化学物质发生化学反应,表现出较高的催化活性,同时还具有耐高温、抗氧化、耐腐蚀等综合优良特性,成为最重要的催化剂材料。由于其价格昂贵,限制了实际的应用。与金、银相比,同族的非贵金属铜更易获得且价格便宜,但是铜金属也更容易失去外围电子,在催化反应中更易被氧化——金属铜在氧化或加氢等催化反应中常表现出铜零价和一价共存的化学态,因此铜催化剂化学性质并不稳定。
为提高铜催化剂的稳定性,研究团队通过“高能等离子体流轰击”的方法,改变铜的外围电子结构,使铜表现出贵金属金和银的特性,在催化反应中保持0价态,进而可以替代金、银催化剂。
研究人员以草酸二甲酯催化加氢的多步串联过程为探针反应,研究发现由高能轰击产生的铜纳米颗粒在反应过程中可被锁定在金属态,在相当宽的反应温度范围内(230-290oC),酯加氢反应都被稳定在了热力学不利但附加值却极高的初步加氢产物乙醇酸甲酯,其选择性最高达87%,这与贵金属金或银的催化性能极其类似。该结果也颠覆了铜催化剂利于发生深度加氢反应而生成乙二醇和乙醇等醇类化合物的传统认知。
DFT理论计算同时表明,在只有零价金属铜活性位存在的条件下,酯加氢可被控制在生成初加氢产物的阶段,而避免像传统铜催化剂一样过度加氢。本项研究工作为调节金属加氢能力,设计贵金属替代的催化剂提供了全新的策略。
17、多相催化与均相催化主要的区别,如何结合优点,克服缺点? (分离难易、活性、腐蚀性, 均相催
个人认为均相催化的最大优点就是催化效率高,因为所有催化活性点都得到利用;缺点也很明显,那就是需要分离(有时很麻烦),较难实现流水作业。
多相催化的最大优点就是分离简单甚至不需要分离(如气固两相催化),可以不间断流水作业;缺点就是催化剂只能利用其表面部分催化活性点,效率稍低,但可以通过增大比表面积来改善。
催化剂的应用对高辛烷值汽油的应用及进展
提高汽油辛烷值技术的新进展 辛烷值是评价汽油质量的主要指标之一。目前,我国FCC汽油约占车用汽油总量的70%以上,重整汽油和其他优质高辛烷值汽油组分含量过低,而低辛烷值的直馏汽油所占比例较高。因此,FCC汽油辛烷值的高低对汽油辛烷值总水平起着举足轻重的作用。 目前提高汽油辛烷值的技术主要有催化重整技术、烷基化技术、异构化技术和催化裂化汽油醚化技术。 催化重整方面 催化重整汽油的最大优点是它的重组分的辛烷值较高,而轻组分的辛烷值较低,这正好弥补了FCC汽油重组分辛烷值低,轻组分辛烷值高的不足。 IFP公司介绍了其连续重整工艺两个主要新进展。设计先进的再生器技术以及与之相关的新一代催化剂CR401。该再生技术把再生分为4个独立的阶段:预烧焦、最终烧焦、氯化更新和焙烧。在预烧焦部分最大限度地降低导致烧焦过程中催化剂脱氯的主要因素--水分含量,即"干烧"。最终烧焦部分采用革新的温度和含氧量调节系统。其优点是延长催化剂寿命、提高烧焦可靠性、改进再生器操作灵活性。该工艺花费不大于常规系统,而催化剂年消耗减少30%~70%。目前已有4套装置采用这一技术。CR401催化剂已工业化,中试结果表明,与CR201相比,C5+汽油收率提高0.2%~0.8%,产氢稳定性相当或更好,可提高产率0.1%~0.5%,活性稍有改善,更耐磨,而且保留氯的性能明显改进。 烷基化方面 烷基化油具有辛烷值高、敏感度好、蒸气压低、沸点范围宽,是不含芳烃、硫和烯烃的饱和烃,是理想的高辛烷值清洁汽油组分。目前烷基化主要有液体酸烷基化技术、固体酸烷基化技术和拟烷基化技术。 长期以来,液体酸烷基化技术一直沿用硫酸和氢氟酸作催化剂。由于腐蚀和环保问题,寻求一种固体酸催化剂替代硫酸和氢氟酸生产烷基化油就成了炼油工业的热门课题。 固体酸催化剂有杂多酸、沸石、离子交换树脂,无机氧化物上附载卤化物的固体酸等多种体系。目前开发较成熟的固体酸烷基化技术有UOP公司的Alkylennye工艺。该工艺采用特定的固相均相催化剂。该催化剂具有优化的颗粒分布和孔径,并能保证良好的传质,对异丁烯具有很高的烷基化活性。Topsoe公司开发的固体酸烷基化工艺采用固定床反应,所用催化剂是在载体上吸附的液体超强酸。 异构化方面 异构化是提高整体汽油辛烷值最便宜的方法之一,可使轻直馏石脑油的辛烷值提高10%~22%。正构化烷烃进行异构化取决于所用催化剂,所以近几年对异构化的研究主要集中在烷基异构化及其催化剂的研究。 C5/C6异构化技术是比较成熟的烷基异构化技术,典型的技术有UOP与壳牌合作的完全异构化技术(TIP),该工艺由异构化和分子筛吸附分离两部分组成。直馏C5、C6馏分,经异构化后研究法辛烷值可从68左右提高到79,然后用分子筛吸附,将正构烃分离出来进行循环异构,辛烷值可以提高到88~89。另外,UOP还推出了多代异构化技术,如基于HS-10分子筛催化剂的异构化、金属氧化物LPI-100催化剂的Parisom技术和基于贵金属含氯氧化铝1-8催化剂的Penex技术等。 目前使用的异构化催化剂主要有两类。其一是无定形催化剂,使用此类催化剂时,反应温度较低(120℃~150℃),氢/烃比小于0.1,不需要氢气循环,但对原料需进行严格的预处理和干燥。采用此类催化剂的有UOP公司的Penex工艺。其二是沸石类催化剂,使用此类催化剂时,反应温度较高(230℃~270℃),氢/烃比大于1.0,因此需要氢气循环。UOP公司的TIP工艺就是采用此类催化剂。 催化裂化轻汽油醚化 催化裂化汽油中含有大量的C4~C11活性烯烃,活性烯烃与甲醇进行醚化反应后,可生成低蒸气压和高辛烷值醚类化合物。目前,国外已开发的新技术主要有: 1.芬兰Neste工程公司的Next TAME技术,醚化后轻汽油辛烷值提高2至3个单位,异戊烯的转化率为90%,雷德蒸气压下降6kPa,烯烃含量下降23%左右; 2.美国CDTECH公司的催化蒸馏工艺,催化裂化汽油通过加氢、醚化、烷烃与烯烃的分离和骨架异构化后,非活性戊烯异构化为活性戊烯,调合汽油中的烯烃减少了80%; 3.美孚公司的轻汽油醚化工艺,轻汽油与甲醇、氢气一起进入装有催化剂的第一反应器,进行临氢醚化反应。反应产物进入装有普通强酸性阳离子交换树脂的第二反应器进一步反应,产品进入脱丁烷塔分离,塔顶为C4和未反应的甲醇,塔底为醚化汽油; 4.Snamprotty公司的DET工艺,经醚化后的汽油,烯烃含量下降28.71%,氧含量达4.85%,抗爆指数提高3.42,调合汽油蒸气压下降24kPa。
贵金属催化剂钋钯含量
3%、5%。贵金属的催化剂钋钯含量是3%、5%,是非常高的,贵金属的稀缺性使催化剂再生和二次资源回收利用成为重要的。
发布于 2022-12-27 12:35:39 回复
发布于 2022-12-27 03:34:26 回复
发布于 2022-12-27 08:11:06 回复
发布于 2022-12-27 09:05:09 回复