珠海贵金属真空镀膜技术-珠海五金电镀

文章简介:

珠海市远星发展有限公司通达真空镀膜厂怎么样?

珠海市远星发展有限公司通达真空镀膜厂是1985-06-10在广东省珠海市注册成立的有限责任公司分公司(自然人投资或控股),注册地址位于珠海市前山东坑第二工业区第四栋5楼。

珠海市远星发展有限公司通达真空镀膜厂的统一社会信用代码/注册号是91440400192524473E,企业法人林康任,目前企业处于注销状态。

珠海市远星发展有限公司通达真空镀膜厂的经营范围是:根据《珠海经济特区商事登记条例》经营范围由章程记载并公示,不属登记事项。以下经营范围信息由企业提供(应与章程一致),企业对信息的真实性、合法性负责:真空镀膜产品生产、加工及销售。(依法须经批准的项目,经相关部门批准后方可开展经营活动)。在广东省,相近经营范围的公司总注册资本为4443万元,主要资本集中在 1000-5000万 和 100-1000万 规模的企业中,共10家。本省范围内,当前企业的注册资本属于一般。

通过百度企业信用查看珠海市远星发展有限公司通达真空镀膜厂更多信息和资讯。

真空镀膜机的几种镀膜方法?

真空镀膜技术,简单地来说就是在真空环境下,利用蒸发、溅射等方式发射出膜料粒子,沉积在金属、玻璃、陶瓷、半导体以及塑料件等物体上形成镀膜层。它的主要方法包括以下几种:

真空蒸镀

其原理是在真空条件下,用蒸发器加热膜料,使其气化或升华,蒸发粒子流直接射向基片,并在基片上沉积形成固态薄膜的技术。

溅射镀膜

溅射镀膜是真空条件下,在阴极接上高压电,激发辉光放电,带正电的氩离子撞击阴极靶材,使其射出膜料粒子,并沉积到基片上形成膜层。

离子镀膜

离子镀膜通常指在镀膜过程中会产生大量离子的镀膜方法。在膜的形成过程中,基片始终受到高能粒子的轰击,膜层强度和结合力非常强。

真空卷绕镀膜

真空卷绕镀膜是一种利用各种镀膜方法,在成卷的柔性薄膜表面上连续镀膜的技术,以实现柔性基体的一些特殊功能性、装饰性属性。

什么是真空镀膜技术?

所谓真空镀膜就是置待镀材料和被镀基板于真空室内,采用一定方法加热待镀材料,使之蒸发或升华,并飞行溅射到被镀基板表面凝聚成膜的工艺。

一、镀膜的方法及分类

在真空条件下成膜有很多优点:可减少蒸发材料的原子、分子在飞向基板过程中于分子的碰撞,减少气体中的活性分子和蒸发源材料间的化学反应(如氧化等),以及减少成膜过程中气体分子进入薄膜中成为杂质的量,从而提供膜层的致密度、纯度、沉积速率和与基板的附着力。通常真空蒸镀要求成膜室内压力等于或低于10-2Pa,对于蒸发源与基板距离较远和薄膜质量要求很高的场合,则要求压力更低。

主要分为一下几类:

蒸发镀膜、溅射镀膜和离子镀。

蒸发镀膜:通过加热蒸发某种物质使其沉积在固体表面,称为蒸发镀膜。这种方法最早由M.法拉第于1857年提出,现代已成为常用镀膜技术之一。

蒸发物质如金属、化合物等置于坩埚内或挂在热丝上作为蒸发源,待镀工件,如金属、陶瓷、塑料等基片置于坩埚前方。待系统抽至高真空后,加热坩埚使其中的物质蒸发。蒸发物质的原子或分子以冷凝方式沉积在基片表面。薄膜厚度可由数百埃至数微米。膜厚决定于蒸发源的蒸发速率和时间(或决定于装料量),并与源和基片的距离有关。对于大面积镀膜,常采用旋转基片或多蒸发源的方式以保证膜层厚度的均匀性。从蒸发源到基片的距离应小于蒸气分子在残余气体中的平均自由程,以免蒸气分子与残气分子碰撞引起化学作用。蒸气分子平均动能约为0.1~0.2电子伏。

蒸发源有三种类型。①电阻加热源:用难熔金属如钨、钽制成舟箔或丝状,通以电流,加热在它上方的或置于坩埚中的蒸发物质(图1[蒸发镀膜设备示意图])电阻加热源主要用于蒸发Cd、Pb、Ag、Al、Cu、Cr、Au、Ni等材料。②高频感应加热源:用高频感应电流加热坩埚和蒸发物质。③电子束加热源:适用于蒸发温度较高(不低于2000[618-1])的材料,即用电子束轰击材料使其蒸发。

蒸发镀膜与其他真空镀膜方法相比,具有较高的沉积速率,可镀制单质和不易热分解的化合物膜。

为沉积高纯单晶膜层,可采用分子束外延方法。生长掺杂的GaAlAs单晶层的分子束外延装置如图2[ 分子束外延装置示意图]。喷射炉中装有分子束源,在超高真空下当它被加热到一定温度时,炉中元素以束状分子流射向基片。基片被加热到一定温度,沉积在基片上的分子可以徙动,按基片晶格次序生长结晶用分子束外延法可获得所需化学计量比的高纯化合物单晶膜,薄膜最慢生长速度可控制在1单层/秒。通过控制挡板,可精确地做出所需成分和结构的单晶薄膜。分子束外延法广泛用于制造各种光集成器件和各种超晶格结构薄膜。

溅射镀膜:用高能粒子轰击固体表面时能使固体表面的粒子获得能量并逸出表面,沉积在基片上。溅射现象于1870年开始用于镀膜技术,1930年以后由于提高了沉积速率而逐渐用于工业生产。常用的二极溅射设备如图3[ 二极溅射示意图]。通常将欲沉积的材料制成板材——靶,固定在阴极上。基片置于正对靶面的阳极上,距靶几厘米。系统抽至高真空后充入 10-1帕的气体(通常为氩气),在阴极和阳极间加几千伏电压,两极间即产生辉光放电。放电产生的正离子在电场作用下飞向阴极,与靶表面原子碰撞,受碰撞从靶面逸出的靶原子称为溅射原子,其能量在1至几十电子伏范围。溅射原子在基片表面沉积成膜。与蒸发镀膜不同,溅射镀膜不受膜材熔点的限制,可溅射W、Ta、C、Mo、WC、TiC等难熔物质。溅射化合物膜可用反应溅射法,即将反应气体 (O、N、HS、CH等)加入Ar气中,反应气体及其离子与靶原子或溅射原子发生反应生成化合物(如氧化物、氮化物等)而沉积在基片上。沉积绝缘膜可采用高频溅射法。基片装在接地的电极上,绝缘靶装在对面的电极上。高频电源一端接地,一端通过匹配网络和隔直流电容接到装有绝缘靶的电极上。接通高频电源后,高频电压不断改变极性。等离子体中的电子和正离子在电压的正半周和负半周分别打到绝缘靶上。由于电子迁移率高于正离子,绝缘靶表面带负电,在达到动态平衡时,靶处于负的偏置电位,从而使正离子对靶的溅射持续进行。采用磁控溅射可使沉积速率比非磁控溅射提高近一个数量级。

离子镀:蒸发物质的分子被电子碰撞电离后以离子沉积在固体表面,称为离子镀。这种技术是D.麦托克斯于1963年提出的。离子镀是真空蒸发与阴极溅射技术的结合。一种离子镀系统如图4[离子镀系统示意图],将基片台作为阴极,外壳作阳极,充入惰性气体(如氩)以产生辉光放电。从蒸发源蒸发的分子通过等离子区时发生电离。正离子被基片台负电压加速打到基片表面。未电离的中性原子(约占蒸发料的95%)也沉积在基片或真空室壁表面。电场对离化的蒸气分子的加速作用(离子能量约几百~几千电子伏)和氩离子对基片的溅射清洗作用,使膜层附着强度大大提高。离子镀工艺综合了蒸发(高沉积速率)与溅射(良好的膜层附着力)工艺的特点,并有很好的绕射性,可为形状复杂的工件镀膜。

二、薄膜厚度的测量

随着科技的进步和精密仪器的应用,薄膜厚度测量方法有很多,按照测量的方式分可以分为两类:直接测量和间接测量。直接测量指应用测量仪器,通过接触(或光接触)直接感应出薄膜的厚度。

常见的直接法测量有:螺旋测微法、精密轮廓扫描法(台阶法)、扫描电子显微法(SEM);

间接测量指根据一定对应的物理关系,将相关的物理量经过计算转化为薄膜的厚度,从而达到测量薄膜厚度的目的。

常见的间接法测量有:称量法、电容法、电阻法、等厚干涉法、变角干涉法、椭圆偏振法。按照测量的原理可分为三类:称量法、电学法、光学法。

常见的称量法有:天平法、石英法、原子数测定法;

常见的电学法有:电阻法、电容法、涡流法;

常见的光学方法有:等厚干涉法、变角干涉法、光吸收法、椭圆偏振法。

下面简单介绍三种:

1. 干涉显微镜法

干涉条纹间距Δ0,条纹移动Δ,台阶高为t=(Δ/Δ0 )*0.5λ,测出Δ0 和Δ,即可,其中λ为单色光波长,如用白光,λ取 530nm。

2. 称重法

如果薄膜面积A,密度ρ和质量m可以被精确测定的话,膜厚t就可以计算出来:

d=m/Aρ。

3 石英晶体振荡器法

广泛应用于薄膜淀积过程中厚度的实时测量,主要应用于淀积速度,厚度的监测,还可以反过来(与电子技术结合)控制物质蒸发或溅射的速率,从而实现对于淀积过程的自动控制。

对于薄膜制造商而言,产品的厚度均匀性是最重要的指标之一,想要有效地控制材料厚度,厚度测试设备是必不可少的,但是具体要选择哪一类测厚设备还需根据软包材的种类、厂商对厚度均匀性的要求、以及设备的测试范围等因素而定。

三、真空镀膜机保养知识:

1. 关闭泵加热系统,然后分离蒸镀室(主要清洁灰尘,于蒸镀残渣)

2. 关闭电源或程序打入维护状态

3. 清洁卷绕系统(几个滚轴,方阻探头,光密度测量器)

4. 清洁中罩室(面板四周)

5. 泵系统冷却后打开清洁(注意千万不能掉入杂物,检查泵油使用时间与量计做出更换或添加处理)

6. 检查重冷与电气柜设备

这次实习给了我们了解了镀膜技术的原理、技术,使我们了解了工厂的生产,感觉很新颖,收获很多。

真空镀膜原理是什么?

真空镀膜原理:

1、物理气相沉积技术是指在真空条件下,利用各种物理方法,将镀料气化成原子、分子或使其离化为离子,直接沉积到基体表面上的方法。

2、化学气相沉积技术是把含有构成薄膜元素的单质气体或化合物供给基体,借助气相作用或基体表面上的化学反应,在基体上制出金属或化合物薄膜的方法,主要包括常压化学气相沉积、低压化学气相沉积和兼有CVD和PVD两者特点的等离子化学气相沉积等。

扩展资料:

真空镀膜设备适用范围:

1、建筑五金:卫浴五金(如水龙头)、门锁、门拉手、卫浴、门锁、五金合叶、家具等。

2、制表业:可用于表壳、表带的镀膜、水晶制品。

3、其它小五金:皮革五金、不锈钢餐具、眼镜框、刀具、模具等。

4、大型工件:汽车轮毂、不锈钢板、招牌、雕塑等。

5、不锈钢管和板(各种类型表面)。

6、家具、灯具、宾馆用具。

7、锁具、拉手、卫浴五金、高尔夫球头、不锈钢餐具、器血等五金制品镀超硬装饰膜。

8、手表、表带、眼镜、首饰等装饰品镀超耐磨装饰(金银)纳米膜和纳米膜和纳米叠层膜。

参考资料来源:百度百科——真空镀膜

真空镀膜原理(里面用到中频··多弧的)

从溅射技术问世以来,处于不断改进的过程。围绕提高溅射速率;提高运行稳定性;改变供电模式;提高膜层质量等等方面,不断地推出新的工作模式。本文试图在整个发展历程中,寻找某些规律,提供一些构思,参与溅射技术发展的讨论。   

 关键词 溅射技术;增强效应;离子束辅助沉积。   

 1842年格洛夫(Grove)在实验室中发现了阴极溅射现象。他在研究电子管阴极腐蚀问题时,发现阴极材料迁移到真空管壁上来了。但是,真正应用于研究的溅射设备到1877年才初露端倪。迄后70年中,由于实验条件的限制,对溅射机理的认同长期处于模糊不请状态,所以,在1950年之前有关溅射薄膜特性的技术资料,多数是不可靠的。19世纪中期,只是在化学活性极强的材料、贵金属材料、介质材料和难熔金属材料的薄膜制备工艺中,采用溅射技术。1970年后出现了磁控溅射技术,1975年前后商品化的磁控溅射设备供应于世,大大地扩展了溅射技术应用的领域。到了80年代,溅射技术才从实验室应用技术真正地进入工业化大量生产的应用领域。最近15年来,进一步发展了一系列新的溅射技术,几乎到了目不暇接的程度。在21世纪来临的时刻,回顾一下溅射技术发展的历程,寻找其中某些规律性的思路,看来是有一定意义的。   

 1.最初溅射技术改革的原动力主要是围绕着提高辉光等离子体的离化率,增强离化的措施包括:   

 [1]热电子发射增强—由原始的二极溅射演变出三极溅射。三极溅射应用的实际效果对离化率增强的幅度并不大,但是对溅射过程中,特别是在反应溅射过程中,工艺的可控性有明显地改善。   

 [2]电子束或电子弧柱增强—演变出四极溅射。Balzers一直抓住这条线,形成有其特色的产品系列,最近几年推出在中心设置一个强流热电子弧柱,配合上下两个调制线圈,再加上8对孪生靶,组合成新型纳米涂层工具镀膜机。是一个典型实例。    

[3]磁控管模式的增强溅射—磁控溅射。利用磁控管的原理,将等离子体中原来分散的电子约束在特定的轨道内运转,局部强化电离,导致靶材表面局部强化的溅射效果。号称为“高速、低温”溅射技术。磁控溅射得到广泛应用的原因,除了效果明显之外,结构不复杂是一个重要的因数,大面积的溅射镀膜工艺得到推广。应该看到,靶面溅射不均匀导致靶材利用率低是其固有的缺点。    

[4]最近有人推出离子束增强溅射模式。采用宽束强流离子源,配合磁场调制,与普通的二极溅射结合组成一种新的溅射模式。他不同于使用窄束高能离子束进行的离子束溅射(这种离子束溅射的溅射速率低),采用宽束强流离子源,配合磁场调制后,既有离子束溅射的效果,更重要的是具有直接向等离子体区域供应离子的增强溅射效果。同时还可以具有离子束辅助镀膜的效果。    

2.1985年之后,溅射模式的变革增加了新的目标,除了继续追求高速率之外,追求反应溅射稳定运行的目标、追求离子辅助镀膜—获得高质量膜层的目标、等等综合优越性的追求目标日益增强。例如:   

 [1]捷克人J.Musil在研究低压强溅射的工作中,在磁控溅射的基础上,重复使用各种原来在二极溅射增强溅射中使用过的手段。从“低压强溅射”一直发展到“自溅射”效应。其中大部分工作仍然处于实验室阶段。   

 [2]针对立体工件获得均匀涂层和色泽,Leybold推出对靶溅射运行模式。在随后不断改进的努力下,对靶溅射工艺仍然具有涂层质量优异的美名。   

 [3]针对膜层组分可随意调节的目标,推出非对称溅射的运行模式。我国清华大学范毓殿教授采用调节溅射靶磁场强度的方法,进行了类似的工作。  

  [4]推出非平衡溅射的运行模式最基本的目的是为了改善膜层质量,呈现离子辅助溅射的效果。后来,一些研究工作扩展磁场增强的布局,磁场在真空室内无处不在,看来效果并不理想,“非平衡”的热潮才逐渐降温。    

[5]1996年Leybold 推出多年研发的成果:中频交流磁控溅射(孪生靶溅射)技术,消除了阳极”消失”效应和阴极“中毒”问题,大大提高了磁控溅射运行的稳定性,为化合物薄膜的工业化大规模生产奠定了基础。最近在中频电源上又提出短脉冲组合的中频双向供电模式,运行稳定性进一步提高。   

 [6]最近英国Plasma Quest Limited(PQL)公司推出S400型专利产品,名为“高密度等离子体发送系统”(High Plasma Launch System),属于上面提到的离子束增强二极溅射模式。其特点是:高成膜速率、高靶材利用率(95%)、膜层质量优良。在光伏器件、光电薄膜、半导体薄膜、磁记录薄膜、精密光学薄膜和工程涂层方面得到广泛应用。   

 3.提高溅射速率是有一定限度的。施加到靶表面的功率密度与靶的溅射速率成正比。等离子体放电空间的离化率越高,靶的溅射电流才可能增大。于是有了种种强化电离的手段来提高溅射速率。实际上限制溅射速率的原因是:靶(阴极)能够耗散多少功率?溅射离子的能量大约70%需要从阴极冷却水中带走,如果这些热量不能及时带走,靶材表面将急剧升温、熔化、蒸发(升华)…从而脱离溅射的基本模式。    

[1]J.Musil研究了高速率溅射和自溅射,施加的靶功率密度高达50W/cm2,甚至更高,但是:只有Cu,Ag,Au靶呈现自溅射效应。在实验室特殊条件下呈现高速率溅射效果,在工业化应用上很难实现。反过来证明:工业化应用中适合的功率密度应该在30W/cm2以下。   

 [2]为了保证工业化应用中靶的稳定运行,直接水冷而且靶材导热性能良好的情况下所施加的功率密度应该在25W/cm2以下。间接水冷而且靶材导热性能良好的情况下所施加的功率密度应该在15-20W/cm2以下。   

 [3]如果靶材导热性能差、靶材由于热应力而引起碎裂、靶材含有低挥发性的合金组分等情况施加功率只能在2-10W/cm2以下。    

[4]靶功率的耗散能力要求精心设计靶(阴极)的各个传热和散热环节:靶材的热性能、靶材与冷套的热接触层、冷却介质的热性能、冷却介质与冷套的接触面积、冷却介质的流速(压力),冷却介质的后续换热功能和恒温功能。    

4.磁控溅射的靶材利用率问题。一般磁控靶的靶材利用率小于20%,经过特殊处理磁场的磁控溅射靶的靶材利用率可以达到40-50%左右。要想使靶材利用率进一步提高,只有采取垂直移动磁场的设计方案,即使如此,靶材利用率提高到75%以上仍然是相当困难的(特别对于矩形平面靶来说)。转动靶材的柱状靶虽然有较高的靶材利用率(大约80%左右),考虑到运行稳定性和冷却效率,常常也不能将其特点发挥到极限。所以说:增加靶结构的复杂程度来换取较高的靶材利用率,有一个得失评估的问题。    要想从根本上解决靶材利用率问题,可能还是要回到二极溅射模式,所以最近推出的离子束增强溅射引起人们的广泛重视。    

5.离子辅助溅射工艺。离子辅助镀膜(Ion Assisted Deposition)技术比较明确的兴起缘于光学蒸镀工艺中,在镀制高质量光学薄膜时,一个重要的工艺参数就是基片温度,一般要求320-350℃,而且同炉基片温差小于±1-2℃,由于温度测量的不准确性(静止定点测温与运动基片实际温度的差异、测温元件与基片的非接触测量产生的差异等),同炉温度场的不均匀性,光学厚度监控技术引起的差异,种种原因使镀膜质量总是有较大的偏差。采用IAD技术后,膜层质量的一致性有了极大地改善。抛开最近采用的激光测厚技术来说,IAD技术几乎是精密光学镀膜必不可少的措施。   

 [1]IAD技术取代或改善了温度场在成膜过程中的作用,关键的一个参数是:轰击离子/沉积原子比,实验证明:I/A比等于1-4时,膜层质量就很好。轰击离子的能量大约70eV左右。这一点可能通过温度场对于膜层生长的热力学模拟,得到更为准确的解释。在非平衡磁控溅射和中频交流磁控溅射都观察到并分析过与IAD相同的工艺过程。    

[2]IAD技术与离子镀(Ion Plating)技术不同,各自的物理模型不一样,不能将偏压溅射与IAD技术混同起来。成膜过程中伴随适当能量的离子轰击对增加膜层附着力、降低膜层内应力、改善膜层结构、保证膜层组分比、获得光滑的膜层表面都有明显的效果。但是这个过程应该是可控的。过度的离子轰击反而会带来相反的效果,例如:沉积粒子的再溅射、晶格缺陷或位错增加、内应力变异、结晶表面粗化、膜层组分偏离、邻近结构对基片表面的污染等。

 [3]所谓“脉冲偏压溅射”(有的报道称为“等离子体源的离子注入”Plasma Source Ion Implantation,PSII)到是另有一番新意,在基片上施加1-3kV 脉冲偏压,膜层质量得到改善。延伸下去,如果基片上施加10-30kV, 300ns幅宽的陡前沿快脉冲偏压,膜层质量又会如何?    综上所述,本文并不是要肯定什么或者否定什么,只是想提出一个问题:从工业应用的角度出发如何选择溅射镀膜的运行模式呢?在新世纪之初,溅射技术基础研究的讨论与实践应该引起同行间的重视了。

我是一名从事真空镀膜7年的技术员,本人从事电子枪和蒸发,希望能有一份好工资,待遇在7500元左右

朋友,你有七年真空镀膜懂电子束和蒸发镀膜,要求七千五,照你要求我干了十年了,应该拿上万了,我现在还是失业,不是你说的,这个跟你干了多久没有好大关系,要看个人的能力和悟醒,素质、各方面都要讲究,有时机遇和运气也要讲究,有的人做了一两年两三年就是管理人员和工程师而且就达到了你这个数了,现在工作难找,各行各业都不缺人,缺的是人才,如果你是一个人才的话我相信你这个数不是很难,镀膜看你是做那一块镀膜、首先你为人处事说话做事如何,还有工艺方面如何,膜系设计、膜系的优化、机台的维修,设备的保养等,如果你一个人能解决从镀膜的开头到结束一条龙你都能搞的定这个数应该不难,关键看你自己,在镀膜方面如果你只是做一般的操作和设备维护、故障处理、参数设定、这些你多办只能算是带有一定技能的工人,如果你要想在镀膜方面有较深的研究,必须要有好的理论知识在加上好的实践,你才能在这个方面做出一定的成绩。


原文链接:https://211585.com/28754.html

相关文章

访客
访客
发布于 2022-08-19 20:13:35  回复
H等)加入Ar气中,反应气体及其离子与靶原子或溅射原子发生反应生成化合物(如氧化物、氮化物等)而沉积在基片上。沉积绝缘膜可采用高频溅射法。基片装在接地的电极上,绝缘靶装在对面的电极上。高频电源一端接地,一端通过匹配网络和隔直流电容接到装有绝缘靶的电极上。接通高频电源后,高频电压不断
访客
访客
发布于 2022-08-20 02:43:35  回复
19世纪中期,只是在化学活性极强的材料、贵金属材料、介质材料和难熔金属材料的薄膜制备工艺中,采用溅射技术。1970年后出现了磁控溅射技术,1975年前后商品化的磁控溅射设备供应于世,大大地扩展了溅射技术应用的领域。到了8
访客
访客
发布于 2022-08-20 02:53:37  回复
等,如果你一个人能解决从镀膜的开头到结束一条龙你都能搞的定这个数应该不难,关键看你自己,在镀膜方面如果你只是做一般的操作和设备维护、故障处理、参数设定、这些你多办只能
访客
访客
发布于 2022-08-19 23:53:43  回复
射”效应。其中大部分工作仍然处于实验室阶段。    [2]针对立体工件获得均匀涂层和色泽,Leybold推出对靶溅射运行模式。在随后不断改进的努力下,对靶溅射工艺仍然具有涂层质量优异的美名。    [3]针对膜层组分可随意调节的目标,推出非对称溅射的

发表评论:

◎欢迎参与讨论,请在这里发表您的看法、交流您的观点。

返回顶部