文章简介:
加氢裂化循环氢中为什么要保证硫化氢的含量
原料中的硫、氮化合物在加氢裂化过程中大多转化为H2S和NH3。H2S和NH3在反应过程中部分溶解在油相中,另一部分有时通过尾气排放至装置以外。还有一部分H2S与物流中的氨反应生成(NH4)2S和NH4HS,经水洗后排出。H2S的存在具有有利的一面也有不利的一面。由于加氢裂化过程中绝大多数采用非贵重金属催化剂,必须在系统中保持一定的H2S分压方能避免硫化态的催化剂被还原。过高的H2S分压对对硫化型加氢裂化催化剂的加氢脱氮活性和裂化活性没有明显影响,但对催化剂的加氢脱硫活性和芳烃饱和能力有明显抑制作用,尤其贵金属催化剂在较高的H2S分压下会变为硫化态导致活性降低。在加氢裂化产物离开裂化床层后,其所存在的极少量烯烃还会与H2S反应生成硫醇使产品腐蚀增加。如果原料硫含量过高,除了会形成NH4HS而堵塞系统,设备的腐蚀速率还会增加,通常系统中H2S达到2%以上,必须采取脱硫措施在高压系统中将H2S脱除。循环氢中H2S浓度过低时,将造成催化剂的金属组分被还原,而降低催化剂加氢活性、加快催化剂的失活。在加工低硫高氮VGO时,就会发生循环氢中硫含量过低的情况。我国在加工大庆、辽河油时遇到了这种情况,循环氢中的H2S浓度有时只有200ppm或更低。上述情况造成的结果,加氢脱硫活性降低,催化剂失活速度加快。当循环氢中H2S浓度低于300ppm时,要采取在原料油中补硫的措施,以维持H2S浓度在300-500ppm范围。对低硫原料补硫的方法有两种,一是如有条件加入部分高硫VGO;另一方法是直接在而加工低硫油时,原料中加入CS2、元素硫、硫醚或二甲基二硫等硫化物。
柴油如何降低硫含量?
柴油中的含硫量对发动机的工作寿命影响很大。
活性硫能直接腐蚀金属,而且论活性硫化物或非活性硫化物,燃烧后生成的SOz和S03遇到燃烧产生的水和水蒸气,在温度高时会形成亚硫酸和硫酸,严重腐蚀发动机机件。当含硫废气进入汽缸壁和曲轴箱时,促使润滑油变质。燃气中的SOz和S03还能使汽缸中生成沉积物,这种沉积物同时兼有腐蚀和机械磨损双重作用,它所引起的磨损比单纯机械磨损要严重得多。
另外,含有硫化物的废气会严重地污染环境。对于车用柴油机,含硫量每增加0.1%,颗粒物排放就增加O.034g/(kW/h)。柴油中硫的质量分数由0.3%减少到0.05%时,颗粒物污染减少9%。我国柴油标准一直对硫含量的要求高,甚至曾经放宽过。如在1981年国标柴油规定硫含量大于0.2%,而1987年和1994年国标规定柴油的优级品的硫含量大于0.2%,一级品的硫含量大于0.5%,合格品大于1.0%。这是符合我国当时环保要求的,而且当时大量的柴油车主要用于交通运输和农业生产,对城市污染的影响大。但随着柴油轿车的迅速发展,以及环保要求日益加剧,所以最新的GB252-2000将硫含量统一定义为大于0.2%。
目前降低柴油中含硫量的方法主要有加氢脱硫和非加氢脱硫。
加氢脱硫技术要求高温高压氢环境以及贵金属催化剂等苛刻条件。费用昂贵。
吸附脱硫是新型方法,操作简单,费用少。该技术以活性炭为载体,CuO,ZnO和硝酸为改性剂,采用等体积浸渍法制备脱硫剂,采用静态吸附法和固定床动态吸附法对脱硫剂的吸附
什么是贵金属催化剂
贵金属催化剂已经有很长的历史了,它的工业应用可以追溯到19世纪的70年代,以铂为催化剂的接触法制造硫酸的工业。1913年,铂网催化剂用于氨氧化制硝酸;1937年Ag/Al2O3催化剂用于乙烯氧化制环氧乙烷;1949年,Pt/Al2O3催化剂用于石油重整生产高品质汽油;1959年,PdCl2-CuCl2催化剂用于乙烯氧化制乙醛;到上世纪60年代末,又出现了甲醇低压羰基合成醋酸用铑络合物催化剂。从上世纪70年代起,汽车排气净化用贵金属催化剂(以铂为主,辅以钯、铑)大量推广应用,并很快发展为用量最大的贵金属催化剂。 贵金属催化剂的英文名称是precious metal catalyst,它主要是以铂族金属(Platinum Group Metal )为主的铂(Pt)、钯(Pd)、钌(Ru)、铑(Rh)、铱(Ir)、锇(Os)等为催化活性组分的载体类非均相催化剂和铂族金属无机化合物或有机金属配合物组成的各类均相催化剂。铂族金属由于其d电子轨道都未填满,表面易吸附反应物,且强度适中,利于形成中间“活性化合物”,具有较高的催化活性,同时还具有耐高温、抗氧化、耐腐蚀等综合优良特性,成为最重要的催化剂材料。 按催化剂的主要活性金属分类,常用的有:铂催化剂、钯催化剂和铑催化剂、钌催化剂等。贵金属催化剂由于其无可替代的催化活性和选择性,在石油、化工、医药、农药、食品、环保、能源、电子等领域中占有极其重要的地位。在石油和化学工业中的氢化还原、氧化脱氢、催化重整、氢化裂解、加氢脱硫、还原胺化、调聚、偶联、歧化、扩环、环化、羰基化、甲酰化、脱氯以及不对称合成等反应中,贵金属均是优良的催化剂。 在环保领域贵金属催化剂被广泛应用于汽车尾气净化、有机物催化燃烧、CO、NO氧化等。在新能源方面,贵金属催化剂是新型燃料电池开发中最关键的部分。 在电子、化工等领域贵金属催化剂被用于气体净化、提纯。催化技术是当今高新技术之一,也是能产生巨大经济效益和社会效益的技术。发达国家国民经济总产值的20%~30%直接来自催化剂和催化反应。化工产品生产过程中85%以上的反应都是在催化剂作用下进行的。 据分析表明,世界上70%的铑、40%的铂和50%的钯都应用于催化剂的制备。 我相信,在不久的未来贵金属催化剂在化学新领域的研究和开发中会有着越来越广泛的应用前景。
常柴里面含硫2.5%,怎样除掉?柴油如何降低硫含量?
降低柴油硫含量提升柴油质量的关键,降低柴油硫含量的技术主要包括加氢脱硫、氧化萃取、生物脱硫和吸附脱硫,其中柴油加氢仍是现阶段主要和最有效的生产超低硫柴油的技术。
主要降低柴油硫含量的方法:1、FCSH柴油逆流加氢深度脱硫脱芳工艺
FCSH工艺是将新鲜氢气或从循环氢脱硫塔出来的氢气从反应器的底部进入,原料油从反应器的上部进入,油、气逆向接触完成反应;气流向上流动使反应过程中产生的有害气体H2S和NH3被及时带出催化剂床层,从而大大提高了加氢脱硫和加氢脱芳烃的反应深度。同时,由于逆流反应器进入的是冷氢,会使反应器温度由上至下沿着轴向成温降趋势,进而利于柴油深度脱芳烃。
FCSH对超深度脱硫效果、芳烃饱和能力、密度降低及十六烷值增幅的优势很明显,可以更好地满足生产符合欧Ⅴ排放标准柴油的需要。
2、FDAS两段法深度脱硫脱芳工艺
FDAS技术是在中等压力条件下,先采用常规催化剂进行加氢精制,再采用非贵金属催化剂进行深度加氢饱和,达到柴油深度加氢脱硫、脱芳烃、提高十六烷值获得低硫低芳柴油的目的。采用两段工艺使得有机氮化物、氨、硫化氢等含量明显降低,有利于芳烃饱和反应。
3、SRH柴油液相循环加氢工艺
SRH下流式柴油液相循环加氢技术是依靠液相产品大量循环时携带进反应系统的溶解氢来提供新鲜原料进行加氢反应所需要的氢气,反应器采用与滴流床反应器相近结构反应器。
4、RTS柴油超深度加氢脱硫工艺
RTS柴油超深度脱硫技术采用一种或两种非贵金属加氢精制催化剂,采用两段一次通过工艺馏程,将柴油的超深度加氢脱硫通过两个反应器完成。第一反应器在较高温度下进行深度脱硫和脱氮反应,大部分易脱硫化物和几乎全部氮化物的脱除在第一个反应器中完成;脱除了氮化物的第二个反应器在较低温度下完成剩余硫化物的彻底环芳烃的加氢饱和,并改善油品颜色。
发布于 2022-07-11 22:25:05 回复
发布于 2022-07-11 22:00:21 回复